Differential operators and the symmetric groups
نویسندگان
چکیده
منابع مشابه
Conformally Covariant Differential Operators: Symmetric Tensor Fields
We extend previous work on conformally covariant differential operators to consider the case of second order operators acting on symmetric traceless tensor fields. The corresponding flat space Green function is explicitly constructed and shown to be in accord with the requirements of conformal invariance. PACS: 03.70.+k; 11.10.Kk; 11.25.Hf; 11.30.Ly
متن کاملDifferential Operators and Cohomology Groups on the Basic Affine Space
We study the ring of differential operators D(X) on the basic affine space X = G/U of a complex semisimple group G with maximal unipotent subgroup U . One of the main results shows that the cohomology group H(X,OX) decomposes as a finite direct sum of non-isomorphic simple D(X)modules, each of which is isomorphic to a twist of O(X) by an automorphism of D(X). We also use D(X) to study the prope...
متن کاملDifferential operators on equivariant vector bundles over symmetric spaces
Generalizing the algebra of motion-invariant differential operators on a symmetric space we study invariant operators on equivariant vector bundles. We show that the eigenequation is equivalent to the corresponding eigenequation with respect to the larger algebra of all invariant operators. We compute the possible eigencharacters and show that for invariant integral operators the eigencharacter...
متن کاملInvariant Differential Operators for Quantum Symmetric Spaces, II
The two papers in this series analyze quantum invariant differential operators for quantum symmetric spaces in the maximally split case. In this paper, we complete the proof of a quantum version of Harish-Chandra’s theorem: There is a Harish-Chandra map which induces an isomorphism between the ring of quantum invariant differential operators and a ring of Laurent polynomial invariants with resp...
متن کاملFredholm properties of radially symmetric, second order differential operators
We analyze Fredholm properties of radially symmetric second order systems in unbounded domains. The main theorem relates the Fredholm index to the Morse index at infinity. As a consequence, linear operators are Fredholm in exponentially weighted spaces for almost all weights. The result provides the basic tool for the analysis of perturbation and bifurcation problems in the presence of essentia...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics: Conference Series
سال: 2021
ISSN: 1742-6588,1742-6596
DOI: 10.1088/1742-6596/1730/1/012129